Навигация:
ГлавнаяВсе категории → Строительное материаловедение

Общие сведения о силикатных материалах


Общие сведения о силикатных материалах

Силикатные материалы и изделия автоклавного твердения представляют собой искусственные строительные конгломераты на основе известково-кремнеземистого (силикатного) камня, синтезируемого в процессе автоклавной обработки под действием пара при высокой температуре и повышенном давлении. Одним из основных компонентов сырьевой смеси, из которой формуются изделия, служит известь, которая обладает большой химической активностью к кремнезему при термовлажностной обработке. Именно поэтому вторым основным компонентом сырьевой смеси является кварцевый песок или другие минеральные вещества, содержащие кремнезем, например шлаки, золы ТЭЦ и др. Чтобы химическое взаимодействие проходило достаточно интенсивно, кремнеземистый компонент подвергают тонкому измельчению. Чем более тонким будет измельченный песок, тем выше должно быть относительное содержание извести в смеси. В качестве других компонентов могут быть также введены заполнители в виде немолотого кварцевого песка, шлака, керамзита, вспученного перлита и т. п. Непременным компонентом во всех смесях выступает вода.

К числу автоклавных силикатных изделий относят силикатный кирпич, крупные силикатные блоки, плиты из тяжелого силикатного бетона, панели перекрытий и стеновые, колонны, балки и пр. Легкие заполнители позволяют понизить массу стеновых панелей и других элементов. Силикатные изделия выпускают полнотелыми или облегченными со сквозными или полузамкнутыми пустотами. Особое значение имеют силикатные ячеистые бетоны, заполненные равномерно распределенными воздушными ячейками, или пузырьками. Они могут иметь конструктивное и теплоизоляционное назначение, что обусловливает форму и размеры изделий, их качественные показатели.

Изделия приобретают свойства, необходимые для строительных материалов, после автоклавной обработки, в процессе которой образуется новый известково-кремнеземистый цемент с характерными для него новообразованиями гидросиликатов кальция и магния, а также безводных силикатов.

Возможность образования в автоклаве камневидного изделия была установлена в конце XIX в., но массовое производство силикатных изделий, деталей и конструкций, особенно типа бетонов, было впервые организовано в нашей стране. Технология их изготовления механизирована и в значительной мере автоматизирована, что обеспечивает получение более дешевой продукции по сравнению с цементными материалами и изделиями. Эффективные исследования в этом направлении были выполнены П.И. Боженовым, А.В. Волженским, П.П. Будниковым, Ю.М. Буттом и др. Было показано, что при автоклавной обработке образуются наиболее устойчивые низкоосновные гидросиликаты с соотношением CaOiSiCh в пределах 0,8—1,2, хотя на промежуточных стадиях отвердевания возможны и более высокоосновные химические соединения. П.И. Боженов, отмечая «технический синтез» цементирующей связки в автоклавном конгломерате, состоящей из смеси гидросиликатов, полагает, что химическое сырье должно удовлетворять определенным требованиям. Оно должно быть высокодисперсным с удельной поверхностью порошка в пределах 2000—4000 см2/г, по возможности аморфным, стеклообразным. Химически активное сырье обеспечивает не только образование цементирующей связки в автоклавном конгломерате, но и ряд технологических свойств сырьевой смеси (формуемость изделий, ровность их поверхности, транспортабельность и др.). Но не только химические и физико-химические процессы влияют на формирование структуры и свойств силикатных материалов при автоклавной обработке. А.В. Волжен-ский первым обратил внимание на изменение тепловлажностных условий при автоклавной обработке и их влияние на качество изделий. В связи с этим было принято выделить три этапа в автоклавной обработке: наполнение автоклава и изделий паром до заданного максимального давления; спуск пара; извлечение изделий из автоклава.

Полный цикл автоклавной обработки, по данным П.И. Божено-ва, слагается из пяти этапов: впуск пара и установление температуры 100°С; дальнейшее повышение температуры среды и давления пара до назначенного максимума; изотермическая выдержка при постоянном давлении (чем выше давление, тем короче режим авто-клавизации); медленное и постепенное нарастание скорости снижения давления пара до атмосферного, а температуры — до 100°С; окончательное остывание изделий в автоклаве или после выгрузки их из автоклава. Оптимальный режим, т. е. наилучшие условия по величине давления пара, температуры и продолжительности всех стадий обработки, обусловливается видом сырья, хотя по экономическим соображениям всегда стремятся к быстрому подъему и медленному спуску давления.

Формирование микро- и макроструктуры силикатного изделия в автоклаве происходит на различных стадиях обработки. Механизм отвердевания известково-песчаного сырца до камневидного состояния выражается в том, что вначале образуется известково-кремнеземистое цементирующее вещество как продукт химического взаимодействия основных компонентов в смеси в условиях повышенных давлений и температур. Согласно одной из теорий (П.П. Будникова, Ю.М. Бутта и др.), образование цементирующего вещества происходит через предварительное растворение извести в воде. Так как растворимость извести с повышением температуры понижается, то постепенно раствор становится насыщенным. Но с повышением температуры возрастает растворимость тонкодисперсного кремнезема. Так, например, с повышением температуры с 80 до 120°С растворимость кремнезема возрастает (по данным Кеннеди) почти в 3 раза. Поэтому при температуре 120—130°С известь и кремнезем, находясь в растворе, взаимодействуют с образованием гелеобразных гидросиликатов кальция. По мере дальнейшего повышения температуры новообразования укрупняются с возникновением зародышей и кристаллической фазы, а затем и кристаллических сростков. При избытке извести возникают сравнительно крупнокристаллические двуосновные гидросиликаты кальция типа C2SH и C2SH2, а после полного связывания извести и в процессе перекристаллизации возникают более устойчивые микрокристаллические низкоосновные гидросиликаты кальция типа CSH и C5S6H5 (то берморит). Кристаллизация происходит вокруг зерен кварца и в межзерновом пространстве; сопровождается срастанием кристаллических новообразований в каркас с дальнейшим его упрочнением и обрастанием.

Согласно другой теории, образование микроструктуры вяжущего происходит не через растворение извести и кремнезема, а в твердой фазе под влиянием процесса самодиффузии молекул в условиях 1 водной среды и повышенной температуры. Имеется и третья теория (А.В. Саталкин, П.Г. Комохов и др.), допускающая образование микроструктуры вяжущего в результате реакций в жидкой и твердой фазах.

Большую пользу в формировании структуры и свойств силикатных камня и материалов оказывают вводимые в смеси добавочные вещества (добавки), выполняющие функции ускорителей процессов образования гидросиликатов кальция или магния, кристаллизации новообразований, модификаторов свойств и структуры. В целом в составе силикатного камня преобладают низкоосновные гидросиликаты кальция, имеющие тонкоигольчатое или чешуйчатое микрокристаллическое строение CSH и тоберморит C5S6H5. В высокоизвестковых смесях в результате синтеза образуется гиллебрандит 2СаО • Si02 • Н20 (т. е. C2SH).

Оптимальная структура силикатного материала формируется при определенном количестве известковр-кремнеземи-стого цемента и минимальном соотношении его фазовых составляющих. В свежеизготовленном конгломерате дисперсионной средой (с) служит известковое тесто (Ит), а в качестве твердой дисперсной фазы (ф) выступает молотый кремнеземистый (песчаный) компонент (Пм). Активность (прочность) известково-кремне-земистого вяжущего вещества оптимальной структуры после автоклавной обработки, как и другие свойства силикатного материала, зависит от величины соотношения Ит: Пм (по массе). Результаты экспериментальных исследований показали, что пределы прочности при сжатии, на растяжение при изгибе, средняя плотность и другие показатели свойств силикатного камня принимают экстремальные значения при R МПа некотором минимальном соотношении с7ф = И^./Пм (рис. 9.28). В полном соответствии с формулой (3.4) прочность силикатного конгломерата Rc = R*lxy где R* — прочность автоклавного силикатного камня оптимальной структуры; ^ х = ШПм : И7ПМ = – 8/5* — отношение усредненных толщин пленок известкового теста соответственно в вяжущем веществе конгломерата и в вяжущем веществе оптимальной структуры; п—показатель степени, зависит от качества исходных материалов.

Выполненные исследования силикатного камня и силикатного конгломерата на примерах бетонов мелко- и крупнозернистых показали, что при оптимальных структурах их свойства полностью подчиняются общим закономерностям ИСК.

Кроме кремнеземистого сырьевого материала, можно использовать в производстве автоклавных изделий распространенные малокварцевые виды сырья — полевошпатовые, глинистые, карбонатные пески, а также шлаки и другие побочные продукты промышленности. Минералы малокварцевого сырья, растворившись в условиях авто-клавирования, становятся активными компонентами, не уступающими по растворимости кварцу. Их активность зависит от размеров радиусов анионов и катионов, входящих в их состав. В автоклаве формируется новое вяжущее (безобжиговое солешлаковое вяжущее), по свойствам превосходящее известково-кремнеземистое автоклавное твердение. Оно состоит из низкоосновных слабозакристаллизован-ных гидросиликатов кальция, а в присутствии ионов алюминия — из высокоосновных гидросиликатов кальция.



Похожие статьи:
Строительные термины и определения

Навигация:
ГлавнаяВсе категории → Строительное материаловедение

Статьи по теме:





Главная → Справочник → Статьи → БлогФорум