Навигация:
ГлавнаяВсе категории → Очистка сточных вод

Очистка сточных вод озонированием


Очистка сточных вод озонированием

Озонирование является универсальным методом, позволяющим эффективно очищать сточные воды от самых разных видов загрязнений.

При нормальных температурах и давлении озон представляет собой газ бледно-фиолетового цвета. Молекула озона включает три атома кислорода, которые структурно образуют равнобедренный треугольник с углом в вершине, равным 116°49’.

При разложении озона высвобождается значительное количество тепла, что может явиться причиной взрыва (нижний предел взрываемости озоно-воздушной смеси в объемных единицах равен 5%).

По сравнению с другими окислителями, например хлором, озон имеет ряд преимуществ. Благодаря высокой окислительной способности, он применяется как для обеззараживания, так и для деструкции трудно-окисляемых органических загрязнений. Этот тип загрязнений представлен в сточных водах многочисленными классами красителей, поверхностно-активных веществ, пестицидов и др. Кроме этого озонирование эффективно для окисления многих неорганических соединений, таких как цианиды, хроматы и др. Дополнительным эффектом озонирования воды является ее обогащение растворенным кислородом.
Озон можно получать непосредственно на очистных установках, причем сырьем служит технический кислород или атмосферный воздух.

Перспективность применения озонирования как деструктивного метода обусловлена также тем, что оно не приводит к увеличению солевого состава очищаемых сточных вод, мало загрязняет воду продуктами реакции, а сам процесс легко поддается полной автоматизации.

В процессе обработки сточных вод озон, подаваемый в камеру реакции в виде озоно-кислородной или озоно-воздушной смеси, вступает в сложный многостадийный процесс физико-химических взаимодействий с водой и содержащимися в ней загрязнениями.

Первоначально взаимодействие озона с водной средой обусловлено процессами диффузионной и турбулентной массопередачи на границе раздела фаз “газ-жидкость”, образованной всплывающими газовыми пузырьками. В результате этого одна часть молекул газа оказывается адсорбированной на внешней поверхности пузырьков, другая – растворенной в воде.

В дальнейшем действие озона сопровождается химическими взаимодействиями с загрязнениями, которые условно можно представить четырьмя основными типами: прямое окисление, окисление радикалами, озо-нолиз, озонокатализ.

Реакции прямого окисления веществ озоном описываются окислительно-восстановительными уравнениями, результатом которых с учетом полноты завершения процесса могут быть вещества с большей положительной валентностью или окислы веществ.

Окисление смеси органических веществ озоном в соответствии со скоростью реакций происходит в следующей последовательности: олефины —> амины —»фенолы —» полициклические ароматические углеводороды —> спирты -» альдегиды —» парафины.

Непрямое окисление осуществляется большим числом активных радикалов, например ОН’, образующихся в результате саморазложения озона в воде. Скорость непрямого окисления прямо пропорциональна количеству разложившегося озона и обратно пропорциональна концентрации присутствующих в воде загрязнителей. Некоторые вещества подвергаются лишь прямому окислению, другие, как органические кислоты с малой молекулярной массой, — окислению радикалами. Окисление может осуществляться также совместным или последовательным воздействием прямого окисления и окисления радикалами.

Озонолиз представляет собой процесс закрепления озона на двойной или тройной углеводородной связи с последующим ее разрывом и образованием озонидов, которые так же, как озон, являются нестойкими соединениями и быстро разлагаются.

Каталитическое действие озона (озонокатализ) заключается в усилении им окисляющей способности кислорода, который присутствует в озонируемом воздухе.

Расход озона на разрушение загрязняющих сточные воды веществ зависит от многих факторов: рН водной среды, температуры, концентрации загрязнений, способа смешения и продолжительности контакта озоно-воздушной смеси с водой.

Для интенсификации процессов озонирования применяют гомогенные и гетерогенные катализаторы, которые увеличивают скорости реакций окисления озоном. Существенная интенсификация очистки сточных вод достигается при совместном применении озона и ультразвука или озона и ультрафиолетового излучения.

Технологические схемы применения озона. Выбор технологической схемы озонирования зависит от многих факторов: состава и количества обрабатываемой сточной воды, дозы озона, скорости взаимодействия озона с окисляемыми примесями и др. Принимая во внимание высокую стоимость получения озона, его токсичность и пожароопасность, важным показателем эффективности работы установок озонирования воды является коэффициент использования озона. Поэтому при разработке технологии применения озона, наряду с его высокой реакционной способностью, следует учитывать и необходимость максимально полного использования непосредственно в контакте со сточной водой.

В процессах очистки воды от веществ, реагирующих с озоном медленно, для достижения требуемой глубины удаления загрязнений и повышения коэффициента использования озона рекомендуется применять двухступенчатые противоточ-ные схемы. В реакторе первой ступени производится предварительное озонирование частично отработанной озоно-воздушной смесью, с концентрацией озона до 5 мг/л. Во второй ступени происходит окончательное окисление примесей свежей озоно-воздушной смесью.

Двухступенчатая схема с делением потока предусматривает устройство двух реакторов. В первый реактор подается 80% общего количества сточных вод, а остальная часть – во второй. Озоно-воздушная смесь последовательно проходит через первый, а затем через второй реакторы. Двухступенчатые схемы позволяют практически полностью использовать подаваемый озон, а его концентрация в отходящих газах не превышает 0,01% по массе.

Оборудование для озонирования сточных вод. Принципиальная технологическая схема озонирования сточных вод состоит из двух основных блоков – получения озона и очистки сточных вод.

Блок получения озона (рис. 13.9) включает четыре ступени: забор и охлаждение воздуха; осушка воздуха; фильтрование воздуха; генерация озона.

Рис. 13.9. Схема установки получения озона:
1 – компрессор; 2 – ресивер; 3 – охладитель воздуха; 4 – сушилка; 5 – генератор озона; 6 – трансформатор; 7 – электрический щит; 8 – подача озоно-воздушной смеси; 9, 10- подача и отведение охлаждающей воды

Атмосферный воздух через воздухозаборную шахту подается на фильтр, где очищается от пыли, после чего воздуходувками подается на водоотделитель капельной влаги, а затем на автоматические установки для сушки воздуха, загруженные активным глиноземом.

Осушенный воздух поступает в автоматические блоки фильтров, в которых осуществляется тонкая очистка воздуха от пыли. Из фильтров осушенный и очищенный воздух подается в генераторы озона.

Озон может быть получен различными методами: с помощью химических реакций, в результате воздействия ионизирующего облучения, высокочастотного электрического поля или коронного (тихого) электрического разряда на атомы кислорода.

В промышленных условиях озон получают пропусканием потока воздуха или кислорода между двумя электродами, к которым приложена разность потенциалов 5-25 кВ. Чтобы избежать образования электрической дуги, один (а иногда оба) электрода покрывают слоем диэлектрика одинаковой толщины (диэлектрическим барьером), образующим эквипотенциальную поверхность. В такой разрядной системе образуется тлеющий коронный разряд. Этот способ получения озона является наиболее выгодным с энергетической точки зрения. Затраты электроэнергии на получение 1 кг озона из кислорода составляют 14-20 кВт-ч и из воздуха – 27-35 кВт-ч.

В конструкциях озонаторов используют трубчатые электроды из стекла, внутренняя поверхность которых покрыта металлической амальгамой. Ее слой является электродом высокого напряжения, а само стекло диэлектрическим барьером. Обычно озонаторы выполняют в виде цилиндрических сосудов, в которых располагается несколько десятков параллельно работающих трубчатых озонирующих элементов, состоящих из двух концентрически расположенных стеклянных трубчатых электродов. Воздух движется вдоль оси озонирующих элементов в кольцевом пространстве.

Производительность озонатора и расход электроэнергии на получение озона в значительной степени зависят от влагосодержания поступающего в него воздуха, температуры, концентрации кислорода, а также от его конструкции и давления озоно-воздушной смеси, подаваемой в контактную камеру.

В обрабатываемую сточную воду озон вводят различными способами: барботированием содержащего озон воздуха через слой воды; проти-воточной абсорбцией озона водой в абсорберах с различными насадками (кольца Рашига, хордовая насадка и др.); смешиванием воды с озоно-воздушной смесью в эжекторах или в специальных роторных механических смесителях.

Выбор типа контактного аппарата определяется расходами обрабатываемой воды и озоно-воздушной смеси, достаточным периодом контакта воды с озоном и скоростью химических реакций.

Основные типы контактных аппаратов для обработки воды показаны на рис. 13.10. Двухсекционная барботажная контактная камера (рис. 13.10, а) наиболее распространена и применяется как для обеззараживания сточных вод, так и для их глубокой очистки. Озоно-воздушная смесь распыляется фильтросными элементами, которые изготавливаются в виде плоских пластин, труб и разных типов диффузоров, из пористых материалов на основе керамики, металлокерамики и пластмасс. Обычно применяют материалы с размером пор от 50 до 100 мкм, так как более мелкие обладают значительным динамическим сопротивлением и быстро забиваются, а более крупные не обеспечивают достаточную дисперсность газовой фазы.

Движение обрабатываемой сточной воды и озоно-воздушной смеси в контактной камере по встречным направлениям обеспечивает большую эффективность озонирования. Барботажные контактные камеры могут быть одно- и многоступенчатыми.

На рис. 13.10, б дан пример контактной камеры с инжекцией озоно-воздушной смеси сточной водой, подаваемой под давлением. Водо-газовая эмульсия вводится инжектором у дна контактного аппарата, откуда поднимается вместе с обрабатываемой водой. Такие установки применяются, как правило, для обработки сточных вод, содержащих легко окисляемые примеси, при малом времени контакта воды с озоном, и для утилизации не полностью прореагировавшего озона в отработанном газе.

Рис. 13.10. Контактные камеры:
а – двухсекционная барботажная; б – камера, оборудованная инжектором; в – камера, оборудованная импеллером; 1,3- подача сточных вод и отведение очищенной воды; 2 – подача озоно-воздушной смеси; 4 – выпуск отработанной озоно-воздушной смеси; 5 – инжектор; 6 – импеллерное устройство

Контактные камеры, оборудованные механическим смесителем-импеллером (рис. 13.10, в), применяются, для небольших расходов воды. Обрабатываемая вода подается в зону всасывания импеллера, который смешивает ее с озонсодержащим газом, эжектируемым под импеллер. Очень тонкая водо-газовая эмульсия проходит в верхнюю часть колонны и снова захватывается импеллером. Этим обеспечиваются многократная рециркуляция потока воды и равномерное распределение газовой фазы по объему реактора. Инжекционные и импеллерные контактные аппараты удобно применять в многоступенчатых схемах озонирования для повторного использования частично отработанной озоно-воздушной смеси.

Количество не использованного в процессе обработки воды озона может составлять 2-8%. С целью предотвращения выбросов в атмосферу не прореагировавшего в контактных аппаратах озона, в системе выпуска отработанной озоно-воздушной смеси предусматривают установку деструкторов остаточного озона. Наибольшее применение нашли термические и термокаталитические деструкторы. Термический метод основан на способности озона быстро разлагаться при высоких температурах. В аппаратах термической деструкции озона обрабатываемый газ нагревают до температуры 340-350 °С и выдерживают в течение 3 с. Существуют конструкции термодеструкторов с рекуперацией тепла.

Термокаталитический метод деструкции основан на быстром разложении озона на кислород и атомарный кислород при температуре 60-120 °С в присутствии катализаторов.

Расчет и проектирование сооружений озонирования. Расчет сооружений и оборудования для осуществления метода озонирования включает два основных этапа: – определение требуемого количества озона, расчет системы диспергирования его в воду и подбор озонаторного и вспомогательного оборудования; – определение геометрических размеров и гидравлических показа-л 1 г телей контактных камер.

Озон и его водные растворы чрезвычайно коррозионны – они разрушают сталь, чугун, медь, резину, некоторые виды пластмасс. Поэтому все элементы озонаторных установок и трубопроводы, контактирующие с озоном или с его водными растворами, должны изготовляться из коррозионно-стойких материалов.

Расход электроэнергии на получение 1 кг озона из хорошо осушенного воздуха для озонаторов различных типов составляет 13-26 кВт-ч, из технического кислорода 6-12 кВт-ч, а из неосушенного воздуха — 43-57 кВт-ч. Расход электроэнергии на осушение Воздуха и его компрессию для получения 1 кг озона 6-10 кВт-ч.

В связи с токсичностью озона, поражающего органы дыхания и центральную нервную систему, особое внимание при проектировании озонаторных установок уделяется вопросу вентиляции помещений и герметизации реакторов (предельно допустимое содержание озона в воздухе помещений, где находятся люди, составляет 0,0001 мг/л).





Похожие статьи:
Депонирование осадков сточных вод

Навигация:
ГлавнаяВсе категории → Очистка сточных вод

Статьи по теме:





Главная → Справочник → Статьи → БлогФорум