Навигация:
ГлавнаяВсе категории → Строительное материаловедение

Полимеризационные полимеры (термопласты)


Полимеризационные полимеры (термопласты)

Процесс полимеризации включает, в основном, три элементарных реакции: образование активного центра, рост цепи и обрыв цепи.

В зависимости от химической природы активных центров различают радикальную и ионную полимеризацию. При радикальной полимеризации активными центрами являются свободные радикалы, образующиеся при распаде перекисей и азосоединений, от воздейст-вия на мономер дополнительной энергии (нагревание, световые и Другие облучения и др.). При ионной (каталитической)’ полимеризации активными центрами служат ионы, образующиеся при распаде катализаторов (AlCb, BF3, TiCU), которыми являются щелочные и Щелочноземельные металлы, кислоты и металлоорганические соединил. В промышленности используют три способа полимеризации: °локе, в растворе и в эмульсии (суспензии).

Блочная полимеризация может осуществляться без растворителей Риодическим или непрерывными способами. В первом случае получают блок полимера, имеющий форму сосуда (емкости), в кот ром происходила реакция полимеризации; во втором — осущест ляют непрерывный выход расплава полимера из реактора. Это-способ характеризуется полимеризацией мономера в «чистом» вид< в присутствии инициатора или катализатора реакции.

Полимеризация в растборе производится «лаковым» способом ц в жидкости, не растворяющей полимер. Полученный раствор поли-мера в растворителе («лак») непосредственно используют в про. мышленности или полимер выделяют путем осаждения или испаре. ния растворителя. При полимеризации по второму способу применяют жидкость, растворяющую только мономер. По мере образования полимер выделяется из раствора в виде осадка или может быть отфильтрован. Полимеризация в растворе позволяет легко отводить теплоту реакции и регулировать степень полимеризации.

Эмульсионная или суспензионная полимеризация является наиболее распространенной в промышленности для получения многих полимеров. В качестве дисперсионной среды при полимеризации эмульсии или суспензии используют воду с эмульгатором, который улучшает эмульгирование мономера в воде. В зависимости от способа приготовления эмульсии мономера в воде и условий проведения полимеризации различают эмульсионную (латексную) и суспензионную (капельную) полимеризацию.

В качестве эмульгаторов обычно применяют мыла: олеаты, лау-раты щелочных металлов, натриевые соли ароматических сульфо-кислот и др. Часто эмульсионную полимеризацию проводят в присутствии водорастворимых индикаторов (перекись водорода и др.).

Поскольку при капельной полимеризации вводят инициатор реакции, не растворимый в воде, но растворимый в мономере, то полимер образуется как бы в каждой отдельной «капле».

В процессе полимеризации могут возникать полимеры, имеющие неодинаковую конфигурацию отдельных звеньев по всей длине цепи. Такие полимеры называют атактическими (неупорядоченными). Однако при полимеризации в присутствии катализаторов практически всегда образуются полимеры, имеющие одинаковую конфигурацию последовательных звеньев. Их именуют как упорядоченные — изотактические полимеры. Они обладают повышенным качеством.

К важнейшим полимеризационным полимерам (термопластам) следует отнести полиэтилен, полипропилен, полиизобутилен, поли-винилхлорид, полистирол, полиакрилаты и др.

В настоящее время промышленность использует следующие методы полимеризации этилена: полимеризация при высоком давлении (до 300 МПа) в присутствии кислорода; при среднем давлении (3,5—7,0 МПа) — в углеродистых растворителях с окйсно-металлическими катализаторами, при атмосферном или очень малом давлении (0,5—3 МПа) с металлорганическими катализаторами.

Полимеризация этилена при высоком давлении производится в трубчатых реакторах и отличается сложностью технологического оборудования. Полиэтилен высокого давления — химически стойкий продукт плотностью 0,95 г/см3 и с повышенной эластичностью, что объясняется наличием в нем 45% аморфной фазы.

Производство полиэтилена при среднем давлении основано на полимеризации этилена в растворе. Этот метод производства полиэтилена в нашей стране широкого распространения не нашел.

При получении полиэтилена низкого давления не требуется сложного компрессорного хозяйства. При низком давлении полиэтилен получают полимеризацией этилена в растворе (бензине) непрерывным методом при давлении 0,15—0,5 МПа и температуре до 80°С в присутствии катализатора Циглера—Натта (комплексные метал-лорганические соединения).

Полиэтилен низкого давления имеет значительные теплостойкость, плотность и жесткость. Основным отличием полиэтилена низкого давления является его кристалличность, в результате чего — меньшие эластичность, прозрачность и большая твердость.

Рис. 11.5. Строение молекулы полиэтилена

Физико-механические свойства полиэтилена в значительной мере зависят от степени полимеризации, т. е. от молекулярной массы готового продукта. Молекулярная масса полиэтилена находится в пределах: низкого давления 10 000—50 000 и высокого Давления 80 000—400 000. Предел прочности при разрыве в зависимости от молекулярной массы полиэтилена колеблется от 18 до 25,5 МПа плотность 0,92—0,95 г/см3, температура плавления 110—125°С, модуль упругости 150—800 МПа.

Полиэтилен (высокомолекулярный) хорошо поддается механической обработке, стоек против агрессивного действия воды, соляных растворов, щелочей, кислот (кроме азотной). При нормальной температуре он нерастворим в органических растворителях и только при нагревании поддается растворению в ароматических углеводородах.

Полиэтилен применяют для производства труб, пленок, гидроизоляционных материалов, тары и предметов сантехнического оборудования. Порошкообразный полиэтилен успешно используют для антикоррозионной защиты металла. Для производства строительных материалов и изделий выпускают следующие марки полиэтилена: 20606-012 (низкого давления), 11802-070 (высокого давления).

Полистирол {—СНг—СНСбНз—]п — твердый продукт полимеризации мономера — стирола. Его выпускают в виде прозрачных листов, гранул (блочный полистирол), бисера или белого порошка (эмульсионный полистирол). Макромолекула его имеет полидисперсную разветвленную структуру. Сырьем для производства полистирола служит стирол СбЙЬСН = СШ — бесцветная воспламеняющаяся жидкость, содержащаяся в некоторых фракциях каменноугольной смолы или вырабатываемая из бензола и этилена. Стирол легко полимеризуется под действием солнечного света и теплоты. В производственных условиях стирол полимеризуют при температуре 80°С в присутствии перекисных соединений (перекиси водорода и перекиси бензоила).

Блочный полистирол имеет высокие механическую прочность (Rp = 35—60 МПа, R = 80—110 МПа) и водостойкость. Молекулярная масса его от 50 000 до 300 000, плотность 1,04—1,06 г/см3, теплопроводность 0,10—0,15 Вт/(м-К). Стоек к действию кислот и щелочей, но имеет хрупкость и невысокую теплостойкость.

Из полистирола изготовляют гидроизоляционные пленки, облицовочные плиты, водопроводные трубы, теплоизоляционные материалы, различную тару, изделия для электропромышленности. Пе-нополистирол является наполнителем многослойных панелей, хорошим теплоизолятором.

Полипропилен [—СН2—СНСНз—]« — продукт полимеризаций пропилена в растворителе (бензин, пропан и др.). Сырьем для получения полипропилена служит бесцветный газ пропилен, выделяющийся при крекинге нефти. Полимеризация пропилена ведется обычно при избыточном давлении 4 МПа и температуре 70°С. Молекулярная масса полимера колеблется в широких пределах от 35 000 до 150 000. Пропилен хорошо сопротивляется воздействию органических растворителей и имеет ряд других положительнывойств. К недостаткам полипропилена следует отнести его малую атмосферостойкость. При воздействии солнечных лучей он подвергается деструкции с заметным ухудшением первоначальных физико-механических свойств. Является перспективным полимером для производства труб, пленок и других изделий, используемых в строительстве при изготовлении бассейнов, пластиковых лестниц и других конструкций.

Сырьем для получения поливинилхлорида служит хлористый винил СНг = СНС1 — при атмосферном давлении газ с эфирным запахом. Его получают из ацетилена или из дихлорэтана.

В результате полимеризации хлористого винила (винилхлорида) образуется полимер, молекула которого имеет линейное строение.

К важнейшим техническим свойствам поливинилхлорида следует отнести его относительно высокую ударную вязкость, прочность при разрыве (до 60,0 МПа), устойчивость к воздействию щелочных и кислых растворов, а также высокие диэлектрические свойства. Его истинная плотность 1,3—1,4 г/см3, водопоглощение за 24 ч 0,4—0,5%, теплопроводность 0,16 Вт/(мК), твердость по Бринеллю до 16.

Изделия на основе этого полимера (трубы, плитки) легко свариваются в струе горячего воздуха при температуре 200°С.

Недостаток поливинилхлорида — сравнительно низкая температура размягчения (70°С). При нагревании этого полимера до 140—150°С начинается его разложение с выделением хлористого водорода, каталитически ускоряющего процесс разложения.

На основе поливинилхлорида изготовляют синтетические лино-леумы, плитки для пола, линкруст, трубы, газонаполненные пластмассы, строительные профили для окон (оконные переплеты) и двери, облицовочные панели типа «Сайдинг» — методом экструзии. Пластифицированный поливинилхлорид широко используют для получения гидроизоляционных и упаковочных пленок; хлорированный поливинилхлорид с содержанием 60—80% хлора (перхлорвинил) применяют для получения стойких лаков и фасадных красок.

Полиизобутилен [—СНг—С(СНз)2—]* — продукт полимеризации изобутилена, полимер без цвета и запаха. Сырьем для получения полимера служит изобутилен, образующийся при переработке нефти. ° процессе производства полиизобутилена полимеризация осущест-вляется при пониженных температурах (-110°С), что достигается от-водом теплоты с помощью хладагентов и разбавителей, добавляемых в реакционную смесь.

Полиизобутилен с молекулярной массой менее 50 000 — вязкая Жидкость. В технике этот полимер применяют с большой молекулярной массой — 300 000, предоставляющий собой каучукоподоб-ный эластичный материал (относительное удлинение 1000—2000%).

Полиизобутилен имеет ряд положительных свойств. Он достаточно легок (плотность 0,91 г/см3), водостоек (водопоглощение 0,05%) и стоек к действию агрессивных сред. Предел прочности по-лиизобутилена при разрыве 6,0—7,0 МПа. Полиизобутилен в виде листов и пленок применяют в качестве хорошего гидроизоляционного материала. В отличие от каучука не способен к вулканизации (химической «сшивке» молекул).

Поливинилацетат — продукт цепной полимеризации винилаце-тата, сложного эфира уксусной кислоты и винилового спирта. По-ливинилацетатные полимеры применяют в виде водных эмульсий для устройства бесшовных полов и изготовления лакокрасочных материалов. Они эластичны, светостойки и хорошо прилипают к поверхности различных материалов.

Индено-кумароновые полимеры — продукты полимеризации соединений — индено-кумарона и их гомологов, содержащихся в сыром бензоле и фенольной фракции каменноугольной смолы. Их выпускают в виде кусков или чешуек плотностью 1,05—1,2 г/см5. Эти полимеры применяют для производства плиток для пола, изготовления лаков и красок для внутренней отделки.

Полиметилметакрилат (органическое стекло) — продукт полимеризации метилового эфира метакриловой кислоты. Он представляет собой совершенно прозрачный полимер в виде листов, блоков и прессовочных порошков.

Сырьем для получения органического стекла служит метилме-такрилат, синтезируемый из ацетона путем его сложной химической переработки. Полимеризация ведется блочным методом при получении полимера с молекулярной массой более 200 000 и эмульсионным — для производства порошкообразного продукта с молекулярной массой от 4000 до 100 000.

Изделия из органического стекла имеют относительно высокую прочность при сжатии (предел прочности до 160 МПа), растяжении и изгибе (до 100 МПа), а также значительную ударную вязкость. Полиметилметакрилат легко поддается механической обработке (резанию, шлифованию и полировке) и почти не снижает своих свойств при пониженных температурах. Он отличается исключительной прозрачностью и способностью пропускать до 74% ультрафиолетовых лучей. Однако следует заметить, что при соприкосновении с огнем полимер горит, не стоек в отношении агрессивных сред, легко растворяется в ряде органических растворителей (ацетон, уксусная кислота и др.)-Высокая стоимость этого полимера и недостаточная абразивостой-кость ограничивают его применение в строительстве.

Полиметилметакрилат используют для остекления зданий специального назначения, витрин магазинов, веранд, оранжерей, больниц, для изготовления светильников, фонарей производственных цехов и т. п. Его можно получать окрашенным в различные цвета, прозрачным и непрозрачным.

Синтетические каучуки — эластичные продукты цепной полимеризации различных углеводородных мономеров: изопрена, дивинила (бутадиен), хлоропрена и др. Изопрен представляет собой газ, переходящий при температуре -35°С в бесцветную жидкость. Его получают в промышленном масштабе путем взаимодействия изобу-тилена с формальдегидом. Дивинил — бесцветный газ, подобно изопрену, относится к соединениям с двойными связями и имеет наибольшее применение в производстве синтетических каучуков. В промышленности его получают из этилового спирта, бутана и ацетальдегида. Хлоропрен — бесцветная жидкость, синтезируемая из ацетилена и хлористого водорода.

В зависимости от исходного мономера в процессе полимеризации получают различные виды синтетических каучуков — изопре-новые, бутадиеновые, бутадиен-стирольные, хлоропреновые и др.

В группе изопрен о вых каучуков следует отметить бутилкаучук (СКИ-3). Он представляет собой продукт полимеризации изобу-тилена с малым количеством (1—5%) изопрена и является важнейшим видом синтетического каучука. Бутилкаучук отличается высокой морозостойкостью, эластичностью, водостойкостью, стойкостью к действию кислорода и сильных кислот. За последнее время особое значение приобрели полиизопреновые каучуки (СКИ). Каучуки этого вида по химическому составу и структуре молекул весьма близки натуральному каучуку, чем и объясняется аналогия свойств этих полимерных материалов. Полиизопреновые каучуки обладают высокими прочностными показателями при растяжении, эластичностью при статических и динамических нагрузках, а также высокой стойкостью при нагревании и окислении.

Из группы бутадиеновых каучуков следует выделить поливиниловый. Он является первым в мире синтетическим каучуком. В настоящее время промышленность выпускает полидивиниловый (СКД), бутадиен-стирольный (СКС), бутадиен-нитрильный и др. По эластичности эти каучуки близки к натуральным каучукам, но превосходят их по теплостойкости и стойкости к истиранию.

Хлоропреновые каучуки получают в процессе эмульсионной полимеризации хлоропрена, обладающего высокой полимери-зационной активностью благодаря наличию в нем атома хлора, о нашей стране хлоропреновые каучуки выпускают различных марок под общим названием — наириты. Эти каучуки имеют высокую клейкость, стойкость против воздействия кислорода, света, кислот и Щелочей. Они обладают повышенной газонепроницаемостью, огнестойкостью (обугливаются, но не горят),‘высокой масло- и бензо-стойкостью, низкой растворимостью и набухаемостью в растворителях. Однако хлоропреновые каучуки склонны к повышенной кристаллизации при нормальной (комнатной) температуре и имеют малую морозостойкость.

В строительстве синтетические каучуки применяют для производства различных клеев и мастик (битумно-кумароно-каучуковые, кумароно-каучуковые и др.). Их используют также для модификации различных полимеров с целью повышения их упругих свойств. Синтетические каучуки находят широкое применение для изготовления герметиков и герметизации швов между панелями при крупнопанельном домостроении; при изготовлении пластобетонов и растворов; для получения различного вида резин.

Синтетические латексы представляют собой водные дисперсии синтетических каучуков и по коллоидно-химическим свойствам аналогичны натуральным латексам. Частицы каучука в синтетическом латексе, имея отрицательный заряд, коагулируют под действием электролита. Синтетические латексы лучше (по сравнению с натуральными) проникают в обрабатываемый ими материал, поскольку имеют меньший размер глобул. Свойства пленок, образованных синтетическими латексами, соответствуют свойствам пленок полимеров. Кроме каучука и воды в состав латексов входят эмульгаторы, противостарители и другие компоненты. В настоящее время наибольшее распространение получили бутадиен-стирольные, бута-диен-нитрильные, хлоропреновые латексы. Их применяют обычно для тех же целей, что и синтетические каучуки. Акриловые латексы получают методом эмульсионной сополимеризации метакриловой и акриловой кислот или стирола с эфиром этих кислот (стирол-акриловые латексы).



Похожие статьи:
Строительные термины и определения

Навигация:
ГлавнаяВсе категории → Строительное материаловедение

Статьи по теме:





Главная → Справочник → Статьи → БлогФорум