Навигация:
ГлавнаяВсе категории → Бетонная смесь

Тепловая обработка бетонных и железобетонных изделий


Тепловая обработка бетонных и железобетонных изделий

На заводах ЖБИ нашли широкое распространение следующие виды тепловой обработки бетонных и железобетонных изделий: пропаривание в камерах периодического или непрерывного действия при нормальном атмосферном давлении и температуре 60-100 °С; запаривание в автоклавах при температуре насыщенного водяного пара 175-190°С и давлении 0,9-1,3 МПа; нагрев в закрытых формах с контактной передачей тепла бетону от различных теплоносителей через ограждающие поверхности форм; электропрогрев бетона; прогрев в электромагнитном поле, а также с использованием солнечной энергии.

Тепловая обработка бетонных и железобетонных изделий является одним из наиболее длительных и ответственных процессов в технологии их производства. Сущность ее состоит в том, что при повышении температуры до 80 – 100°С скорость реакции гидратации вяжущих веществ увеличивается.
Тепловая обработка бетонных и железобетонных изделий проводится до достижения распалубочной, отпускной, а для предварительно напряженных изделий передаточной прочности.

Под распалубочной прочностью подразумевается необходимая прочность бетона, по достижению которой возможны выемка изделия из формы без повреждений и безопасное транспортирование к месту хранения.

Отпускная прочность бетона согласно ГОСТ 13015.0 должна быть не менее: для изделий из тяжелых бетонов всех классов и легких бетонов класса В7.5 и выше – 70%; для легких бетонов класса ниже В7.5 – 80%; для бетонов автоклавной обработки – 100% проектной прочности. В холодное время года отпускная прочность бетона назначается равной его проектной прочности.

Для предварительно напряженных изделий достигают передаточной прочности бетона, которая необходима к моменту передачи на него усилий предварительного натяжения.

Так как железобетонные изделия разнообразны по своим размерам, составу, свойствам, способам формования, требованиям к виду и качеству поверхности, применяются различные установки тепловой обработки. Эти установки отличаются по принципу действия— периодические и непрерывные.

К установкам периодического действия относятся ямные камеры, автоклавы, кассетные установки и кассетные формы. К установкам непрерывного действия относятся туннельные, щелевые, вертикальные камеры, камеры прокатных станов.

В качестве теплоносителя широкое распространение получили пар и паровоздушная смесь, а также подогретый и увлажненный воздух.

При применении в качестве источника теплоты электроэнергии нагрев изделия осуществляют при непосредственном прохождении электрического тока через бетон или при помощи различных нагревателей и излучателей.

На продолжительность тепловой обработки влияет минеральный состав цемента. При применении низкоалюминатных цементов продолжительность тепловой обработки обычно составляет 13-15ч. Среднеалюми-натные цементы интенсивно набирают прочность в начальный период про-паривания, поэтому при их применении продолжительность тепловлажно-стной обработки составляет 10-13 ч.

Нежелательно применение высокоалюминатных цементов, так как после быстрого кратковременного твердения они резко замедляют рост прочности как при дальнейшем прогреве, так и при последующем твердении.

Широкое распространение при производстве сборного железобетона нашли шлакопортландцементы и быстротвердеющие портландцементы (БТЦ, ОБТЦ). Одним из путей интенсификации режимов пропаривания бетона является введение в бетонную смесь электролитов-ускорителей твердения: нитрит-нитрат кальция (ННК), нитрит-нитрат хлорид кальция (ННХК). Применение этих добавок позволяет без снижения прочности уменьшить длительность изотермического прогрева в два раза (с 8 до 4 ч).

В процессе тепловой обработки в бетоне происходят сложные физические процессы, вызывающие появление деформаций способствующих образованию трещин.

При подъеме температуры и в начале изотермического прогрева температура и давление пара в изделии более низкие, чем окружающей среды и наружные более нагретые его слои увеличиваются в объеме в большей степени, чем внутренние. Кроме того, разница температуры в различных слоях бетона создает в них разность парциальных давлений. Это вызывает перемещение влаги из наружных слоев во внутренние и расширение находящейся в порах паровоздушной смеси, создающей внутри бетона избыточное давление. В этот период, особенно при быстром подъеме температуры, в бетоне возникают значительные напряжения и образуются трещины и нарушается контакт между цементным камнем и заполнителем.

При изотермическом прогреве затвердевший бетон увеличивается в объеме и вследствие разницы коэффициентов линейного температурного расширения его компонентов образуются микродефекты.

При снижении температуры в камере температура бетона и давление в нем пара будут выше, чем в окружающей среде и начинается движение в нем нагретого воздуха к открытой поверхности изделия, а также миграция из глубинных слоев бетона влаги с интенсивным ее испарением.

Таким образом, в бетоне в период тепловлажностной обработки наблюдаются остаточные объемные деформации, возникающие в начальной стадии твердения при нагревании изделий из еще недостаточно прочного бетона, образование направленной капиллярной пористости, в связи с перемещением влаги и паровоздушной смеси, пониженной плотности цементного камня в бетоне, вызванной недостаточной степенью гидратации и образованием более крупных кристаллогидратов, приводящих к появлению многочисленных дефектов, вызывающих снижение эксплуатационных характеристик изделий и конструкций.

Итак, в процессе тепловой обработки наряду с рядом положительных факторов, ускоряющих твердение, имеют место факторы отрицательно влияющие на формирование структуры бетона в изделии. Задача технологов сводится к тому, чтобы усилить влияние положительных факторов и ослабить или исключить влияние отрицательных. Это осуществляется путем оптимизации режимов тепловой обработки.



Похожие статьи:
Контроль прочности бетона

Навигация:
ГлавнаяВсе категории → Бетонная смесь

Статьи по теме:





Главная → Справочник → Статьи → БлогФорум