Навигация:
ГлавнаяВсе категории → Разрушение зданий

"Каково удлинение, такова и сила"


"Каково удлинение, такова и сила"

В 1675 г. в Англии была опубликована странная научная работа. В одной из глав не было никакого текста, за исключением 14 латинских букв, расположенных таким образом, что это ни о чем не говорило. Это была анаграмма; наличие ее в этом месте можно было понимать только как своеобразную заявку на приоритет в случае, если с течением времени кто-нибудь откроет и опубликует то, что заключено в шифре. Опередив события на несколько веков, раскроем еще часть тайны: речь идет о том, что является одной из основ современной техники, -о законе Гука. Итак, автор анаграммы Роберт Гук – знаменитый для своего времени естествоиспытатель, исследователь с весьма разносторонними интересами, один из основателей Королевского научного общества Великобритании.

О широте интересов Гука говорит то множество областей, в которых он успешно работал. Он усовершенствовал микроскоп и телескоп, предложил теорию света, сконструировал воздушный насос, почти открыл закон всемирного тяготения (из-за чего всегда был очень неприятен великому Ньютону), усовершенствовал барометр, изобрел оптический телеграф, создал прообраз теодолита и прибор для измерения силы ветра, вместе с Гюйгенсом установил постоянные точки на термометре, занимался ботаникой, первым ввел термин “клетка”. Гук, по-видимому, был и первым сейсмологом. В 1688 г. он опубликовал труд “Книга о землетрясениях“. Но с нынешней точки зрения Гук, несомненно, замечателен тем, что дал крайне лаконичную формулировку – “каково удлинение, такова и сила”. Именно такое значение имел текст анаграммы.

Интерес к упругим свойствам тел возник у Гука под влиянием бесед с известным в то время часовщиком Томасом Темпианом. В стремлении изучить механизм, который заставляет всякое твердое тело восстанавливать первоначальную форму после деформации (и вообще сопротивляться деформациям), он проделал много опытов со стальными нитями и стержнями, подвергая их нагрузке на растяжение и изучая их удлинение. Так, эмпирическим путем Гук постиг соотношение между растягивающей силой и удлинением элемента, т.е. то, что издавна лежит в основе технических расчетов человечества.

Итак, сила, с которой всякое тело сопротивляется нагрузке, стремясь вернуть свою первоначальную форму, пропорциональна деформации, которую вызывает внешняя сила. Необходимо четко разграничить понятия “внешняя сила” и “внутренняя сила”. Внешняя сила – это воздействие нагрузки, которое чаще всегб обусловлено земным притяжением. А внутренняя сила (или, как ее еще называют, внутреннее сопротивление) обусловлена молекулярным строением тела, когезией внутренних частиц. Эти простые истины, которые мы повторяем в течение целой минуты, помогут объяснить многие явления, связанные с работой различных конструкций. Простой стальной прут, подвергающийся нагрузке на растяжение, и закон Гука явно или тайно будут нас преследовать всюду.
Когда речь идет о внутреннем усилии, гораздо удобнее брать не всю силу, а лишь ту ее часть, которая действует на единицу площади сечения. Эта относительная сила называется напряжением. Хорошо запомним это слово, чтобы оно уже никогда не звучало для нас абстрактно. По тем же причинам гораздо удобнее рассматривать не полное удлинение элемента, а удлинение по отношению к единице длины, например к одному метру. Такое относительное удлинение (или укорачивание) называется деформацией. Это точный научный термин, хотя он довольно свободно и безответственно употребляется в “ненаучном” мире.

После такого, может быть, досадного, но необходимого вступления давайте перенесемся в современную лабораторию испытаний строительных материалов, где повторим один из опытов Роберта Гука.

Это – большой и светлый* зал, вокруг серьезно и сосредоточенно движутся люди в белых халатах, в воздухе носится приглушенный гул испытательных машин. Их много: для испытаний на растяжение и на сжатие, на изгиб и на срез, на скручивание и на смятение, для испытаний бетона, стали или дерева.

Рис. 6. “Удостоверение личности” низкоуглеродистой мягкой стали. Экспериментально установленные зависимости между деформациями и напряжениями являются важнейшей характеристикой строительно-конструкционного материала

Испытуемые тела тоже отличны от тех, которыми пользовались во времена Гука. Наш стальной образец (так его называют специалисты) имеет круглое сечение диаметром 20 мм и в десять раз большую рабочую длину, а по краям снабжен специальными расширениями, которые вставляются в зажимы машины. Сталь должна быть с малым содержанием углерода (около 0,2%). Именно такая сталь в основном используется для строительных целей во всех странах мира. Болгарский вариант такой арматурной стали в государственном стандарте НРБ обозначен символом A-I. Зажимаем образец челюстями машины, нажимаем на кнопку—и гидравлическое устройство начинает работать. Нагрузка на образец становится все больше, увеличивается и его удлинение. В это время специальное устройство автоматически вычерчивает график зависимости между напряжениями и деформацией. От нас требуется только наблюдать и делать выводы. Первый, довольно длительный период эксперимента подтверждает слова Гука о том, что “каково удлинение, такова и сила” или наоборот (рис. 6).

Записывающее устройство с начала опыта до точки “а” вычерчивает круто поднимающуюся прямую линию. Однако внезапно’ эта линия перестает подниматься и идет по другому пути: это тоже прямая (или почти прямая) линия, но только горизонтальная. От точки “а” до точки “б” деформации в материале резко нарастают . . . при фиксируемом, но почти незаметном росте напряжения. Если бы Гук стоял рядом с нами, он бы очень расстроился, так как происходит что-то такое, о чем он даже не подозревал. При предельной нагрузке в структуре тела происходит качественный скачок: его полированная поверхность становится матовой, появляются едва .заметные линии, направленные под углом 45° к его оси. Материал как бы течет. Поэтому горизонтальная площадка называется площадкой текучести, а его начало – в точке “а” – точкой текучести. В интервале “а-б” происходят деформации, которые приблизительно в 20 раз больше, чем в точке текучести.

Но и это еще не предел возможностей материала. От точки “б” график начинает подниматься вверх: растут напряжения, растут и деформации. Но теперь он идет вверх не так круто и к тому же криволинейно. Зависимость между напряжениями и деформациями уже не подчиняется в чистом виде закону Гука, поскольку деформации растут быстрее, чем напряжения. Говоря обыденным языком, эта часть графика свидетельствует о том, что увеличение напряжений в материале происходит ценой значительных деформаций. А это слишком большая цена, которая ни в коем случае не приемлема.

Опыт приближается к концу. В последний момент образец разрывается. Эта маленькая катастрофа происходит после того, как испытуемое тело удлиняется на 25%. Или, как сказали бы специалисты, деформация разрушения равна 0,25. Это соответствует сопротивлению материала приблизительно в 4200 кг/см.

Можно ли использовать столь внушительные возможности мягких сталей (так называются низкоуглеродистые стали) в строительстве? Ответ будет категорическим: нельзя. Вспомним пример с конструкциями из резины: большая прочность за счет относительно больших деформаций абсолютно не нужна и даже опасна. Перекрытия провиснут, едва ли не придавливая людей, облицовка будет осыпаться со стен, а вместо зданий и сооружений будет как бы гигантская пружина.

С мягкими сталями положение особое, так как существует площадка текучести. Это своеобразный барьер, который материал должен преодолеть, чтобы перейти в область более значительных напряжений. Однако для реальных конструкций преодоление этого барьера означает наличие аварийных деформаций и перемещений. Следовательно, практическое значение имеет лишь часть графика а-б, которая находится ниже площадки текучести (линия “0-а”). Но здесь напряжения едва достигают 2400 кг/см2. Что делать, такова действительность ...

Есть возможность использовать ‘часть прочностного резерва сталей этого типа в случае применения их в качестве арматуры. Это делается следующим образом. На специальных стендах арматурные прутья растягиваются так, чтобы была пройдена площадка текучести и реализовалась часть последующих деформаций. После этого прут, разумеется, не восстанавливает своей первоначальной длины, по сравнению с которой он увеличился примерно на 6%. Такая необратимая остаточная деформация называется пластической. Здесь, в сущности, начинается нечто особенное. Если прут повторно напрягается (уже как часть конструкции), его площадка текучести оказывается значительно выше, т.е. при значительно больших напряжениях, чем при первоначальном растяжении. Новая площадка текучести приблизительно соответствует напряжению, которое достигнуто при первоначальном растяжении. Структурные повреждения, которые произошли в стали при такой первоначальной обработке, в этом случае оказываются полезными. Предел текучести может подняться с 2400 кг/см примерно до 3000 кг/см.

Такой вид механической отработки имеет и свои отрицательные стороны, Новые свойства стали являются не такими стабильными во времени, как основные ее свойства. Но это еще только полбеды. Важно то, что таким несложным и сравнительно дешевым способом на практике “облагораживается” значительное количество низкоуглеродистой арматурной стали для железобетонных конструкций.

Практикуется также холодная вытяжка арматурной стали через отверстия с постепенно уменьшающимся диаметром. Высокие напряжения и пластические деформации в стали могут достигаться и путем так называемой холодной прокатки. Специальными вальцами мягкая сталь круглого сечения частично сдавливается, причем на ее поверхности остаются характерные отпечатки, а механический эффект в конечном счете подобен тому, который наблюдается при холодной вытяжке.

Стали такого рода могут работать с напряжением, которое для необработанных сталей находится далеко за критическим пределом текучести.



Похожие статьи:
Ураганные ветры и строительство

Навигация:
ГлавнаяВсе категории → Разрушение зданий

Статьи по теме:





Главная → Справочник → Статьи → БлогФорум