Навигация:
ГлавнаяВсе категории → Разрушение зданий

Землетрясения и строительство


Землетрясения и строительство

Итак, здания и сооружения в обширных районах планеты находятся на своеобразных виброплатформах, которые в определенный момент могут заколебаться. Какие меры следует принимать, чтобы оградить их от пагубных последствий этих колебаний?

Проблемы сейсмостойкого строительства, пожалуй, наиболее сложные для современной технической цивилизации. Трудности обусловлены тем, что заранее, “авансом”, необходимо принимать меры против события, разрушительную силу которого невозможно рассчитать. Отдельные землетрясения имеют случайный характер. Последующее землетрясение в той или иной степени отличается от предыдущего. Поэтому подход специалистов к решению проблем сейсмостойкости сооружений в значитель- I ной мере умозрительный, теоретический, основывающийся на весьма идеализированных предположениях. Разумеется, в нынешнем веке, и особенно в последнее время, было проведено много важных исследований. Однако до сих пор землетрясения остаются единственной надежной проверкой как геологических и сейсмологических постулатов, так и принятых методов расчета конструкций на сейсмостойкость.

Первый метод расчета сейсмостойких конструкций был разработан в начале нашего столетия в Японии. Его создателя Омори побудили к этому ужасные последствия землетрясения в Токио и Иокогаме – одного из самых колоссальных бедствий, постигших планету в новое время. Метод был очень несовершенным: сейсмические нагрузки были представлены в виде статических сил, а здание рассматривалось как недеформируемое. Совершенно очевидно, что землетрясение вообще, и воздействие его на конструкцию в частности, представляет собой чисто динамический процесс: сейсмические нагрузки на конструкцию за доли секунды изменяются как по величине, так и по направлению воздействия. Это привело к появлению и быстрому развитию динамических методов, которые в настоящее время приняты почти во всех странах, расположенных в сейсмоактивных районах.

Первый опыт в этой области датируется 1920 г. (Монобе, Япония), но основы метода в наиболее общем виде были изложены советским ученым Завриевым в 1927 г. Сейсмические силы, являясь инерционными силами, обусловлены массой колеблющегося тела и ускорением отдельных его частиц.

Масса в любом случае известна: она определяется постоянной нагрузкой и в значительной степени временными вертикальными нагрузками, расчет которых не представляет проблемы. Путем уменьшения массы можно достигнуть и уменьшения сейсмических нагрузок. Отсюда и современная тенденция к облегчению конструкций в сейсмоактивных районах посредством применения более легких строительных материалов главным образом для несущих, например, ограждающих элементов.

Самым “ крепким орешком” при определении сейсмических сил является ускорение, с которым колеблются отдельные части конструкции. Из множества характеристик землетрясения — амплитуд, скоростей, интенсивности, продолжительности — самая важная – ускорение, с которым колеблются частицы почвы. Каким оно будет? Предусмотреть величину ускорения, по существу, значит предусмотреть силу землетрясения, а это почти так же трудно, как предсказать день, в который оно произойдет. Мы уже говорили, что землетрясения имеют случайный характер. Так или иначе, но эти проблемы решают сейсмологи; конструкторы же работают с учетом того фактора, что может произойти землетрясение, от которого они должны обезопасить свое творение. Фактически они располагают вероятной картиной землетрясения в основании здания. Однако каким будет ускорение отдельных точек по высоте конструкции?

Из почвы в конструкцию поступают колебания, сейсмические силы, но почва и отдельные точки сооружения колеблются с разным ускорением. Это обусловлено относительной гибкостью конструкции, ее неизбежной склонностью к деформациям, которая в данном случае исключительно полезна: благодаря разнице ускорений кинематическая энергия землетрясения расходуется на работу по деформации конструкции и общий разрушительный потенциал земного катаклизма сильно уменьшается. Деформации, которым подвергается конструкция, в значительной степени не являются необратимыми. Такие динамические и упругопластические свойства конструкции и материалов, из которых она изготовлена, обусловливают в основном эффект от воздействия сейсмических сил на сооружение.

Именно это обстоятельство не учитывалось в статическом методе расчета конструкций на сейсмостойкость, созданном Омори, И именно оно более или менее точно учитывается при современных динамических методах. Одна из наиболее распространенных разновидностей этих методов называется спектральной. Она появилась в начале 40-х годов в США и была разработана на основе обширной информации о землетрясениях“ 1923 г. в Сан-Франциско в 1933 г. в Лонг-Бич. Для американского варианта спектрального метода характерно то, что динамическое воздействие на здания и сооружения определяется с помощью универсальных моделей. На этой основе создается серия графиков (спектров) максимального ускорения, скорости и перемещения систем с различными собственными частотами при данном землетрясении. Поскольку характер землетрясения специфичен для каждого района, подобный подход вполне приемлем. Однако, чтобы иметь записи местных ускорений при землетрясении, необходимо, чтобы район достаточно проявил себя в сейсмическом отношении, да к тому же в недавнее время. Посредством анализа многих обстоятельств определяется соответствующий данному месту спектр сейсмических ускорений, которым пользуются конструкторы. Именно таким образом был создан стандартный спектр калифорнийских норм, с помощью которого в США проектируются сейсмостойкие здания и сооружения.

Параллельно с американскими исследованиями, но независимо от них развивается советский вариант спектрального метода, полное теоретическое обоснование которого дано исследователем Корчинским. Особенностью этого метода является аналитическое определение реакции конструкций на сейсмическое воздействие. Параллельно развивается разновидность динамического метода, при которой используются акселерограммы действительно происходивших землетрясений. Акселерограммами называются записи ускорений почвы во время землетрясения. На основе определенного числа таких записей и специальных математических методов получаются довольно точные результаты. Но из-за большого объема вычислительной работы и отсутствия достаточно полных и точных записей эта разновидность метода используется редко, в основном для очень ответственных сооружений, В последние годы все шире применяются методы, основывающиеся на теории вероятности и математической статистике.

Так или иначе, но не будет преувеличением сказать, что расчет сейсмических сил, которые нагружают конструкции, составляет 90% общего объема вычислительных работ. Практические методы определения этих сил весьма разнообразны. Сравнение технических норм различных стран обнаруживает значительное разнообразие даже основных концепций. Разумеется, это до некоторой степени оправданно, поскольку существуют различия между странами как в условиях их сейсмичности, так и в условиях их экономических и технологических возможностей. Однако два основных момента являются общими: 1. Несмотря на произвольное направление сейсмических сил, считается, что здания и сооружения имеют определенный резерв устойчивости по отношению к вертикальным нагрузкам, и поэтому расчет на сейсмику учитывает лишь горизонтальные нагрузки, возникающие при землетрясении. Исключение составляют некоторые мосты, козырьки, консоли, для которых вертикальные нагрузки имеют решающее значение. 2. Рассматривается только один момент динамического процесса колебаний, но именно тот самый момент, когда сейсмические силы достигают своей экстремальной величины. Далее полученные силы трактуются как статическая нагрузка. В этом нет ничего удивительного, потому что динамичность явления в достаточной степени учитывается при определении величины самих сейсмических сил.

Для удобства расчетов предполагается, что массы зданий и сооружений сконцентрированы в определенных их точках, хотя в действительности они равномерно распределены по всей их высоте. Например, для многоэтажных зданий такими точками считаются уровни отдельных этажей. При расчете зданий на устойчивость к сейсмическим воздействиям допускается возможность известных пластических деформаций и даже частичных разрушений, но лишь в неответственных и легковосстановимых несущих элементах, таких,как перегородки или фасадные стены. Все это продиктовано стремлением к разумному компромиссу между затратами на строительство и обеспечением необходимой надежности. В последнее время проводятся исследования по изучению взаимодействий между грунтовым основанием и конструкцией. Деформации в почве тоже поглощают часть кинетической энергии подземных толчков, и это еще один резерв удешевления антисейсмических мероприятий.

Когда речь идет о конфликте между сейсмическими силами и конструкцией, необходимо иметь в виду, что землетрясения представляют собой серию толчков, иногда с определенными паузами между ними, и что первые толчки создают условия для усиления эффекта последующих. Некоторые здания способны устоять при первых тектонических колебаниях, но получают при этом частичные повреждения — образуются трещины, ослабляются связи и т.п., что значительно снижает их устойчивость. Достаточно следующего, даже сравнительно слабого толчка, чтобы они разрушились.

Итак, конструкторские проблемщ сейсмостойкого строительства являются весьма нелегкими, но покоятся на солидном, хотя и формальном основании: известны характеристики землетрясения. Насколько это основание совпадает с действительностью, другой вопрос. Здесь мы снова наталкиваемся на “твердый орешек” сейсмологии: каким будет характер вероятного будущего землетрясения, будут ли здания и сооружения надежны до такой степени, чтобы “и вблки были сыты и овцы целы”? На эти вопросы пока точного ответа дать нельзя. Проделана огромная работа по сейсмическому районированию потенциально опасных территорий. Она выполнена с помощью современных геологических и сейсмологических исследований на основе тщательного изучения различных древних письменных источников и хроник, в которых речь идет о происходивших землетрясениях. И поскольку большое значение имеет локальная геологическая и гидрогеологическая картина, наметилась уже тенденция и к микрорайонированию, т.е. выделению более мелких сейсмических районов.

Сейчас еще нельзя дать категорического ответа на вопросы, касающиеся столь сложной области, где условия диктуются капризами природы и где метафизическая случайность (облаченная в одежды научной вероятности) играет почти такую же роль, как и тысячу лет назад. И все же, если характер будущих землетрясений окажется близким к ожидаемому (а это весьма вероятно, поскольку прогнозы составляются на основе всех тех знаний, которыми располагает мировая наука и практика), можно будет сказать со всей определенностью, что принимаются самые надежные меры против самого страшного стихийного бедствия.





Похожие статьи:
Ураганные ветры и строительство

Навигация:
ГлавнаяВсе категории → Разрушение зданий

Статьи по теме:





Главная → Справочник → Статьи → БлогФорум